If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+32x-160=0
a = 1; b = 32; c = -160;
Δ = b2-4ac
Δ = 322-4·1·(-160)
Δ = 1664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1664}=\sqrt{64*26}=\sqrt{64}*\sqrt{26}=8\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-8\sqrt{26}}{2*1}=\frac{-32-8\sqrt{26}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+8\sqrt{26}}{2*1}=\frac{-32+8\sqrt{26}}{2} $
| |x|=20 | | (x-5)^4=80 | | 16+4*n=7-n | | (x-5)^4=8- | | 2x-12=3x-31 | | 7^x+5=-26 | | 10x=x-18 | | 8w=21+5w | | 8x+6–2x=6x+5 | | x^2+(0.5*x)^2=6 | | 4x-9=3x-26 | | X=2x-2x | | 2(x–3)+21=–3 | | (2x-3)^3-(2x-3)=0 | | (1/4)x+7=8 | | 2/3(9x-6)=4x+10 | | 3k-5k-30=-20 | | 6x+9x=15x-3 | | 15^2+2t-1=0 | | -3x+5x-9=2(x-1)-32 | | x+(4/3)x=28 | | (x-4)^2=-2 | | (x-3)^2-11=0 | | 5+2(3+2x)=x+3(x+2) | | -15=-5v | | 4x+4=8x+2 | | x2+x-30=0 | | x^2+12-7x=0 | | 5^(x^2+8x)=1 | | m^2-5m-7=0 | | x+(4/3x)=28 | | 7x-(4x-4)=22 |